LaShanda Korley

LaShanda Korley

Climo Associate Professor and Principal Investigator, Korley Research Group, Case School of Engineering

Visiting Associate Professor 2015-2016

Hosted by the Department of Chemistry

LaShanda Korley is the Climo Associate Professor and Principal Investigator of the Korley Research Group at the Case School of Engineering.


LaShanda Korley is the Climo Associate Professor and Principal Investigator of the Korley Research Group at the Case School of Engineering. Her research interests are: bio-inspired approaches to material toughening and mechanical enhancement; influence of confinement on self-assembly and mechanical behavior; stimuli-responsive composites; interplay of non-covalent and covalent interactions; and new processing strategies for film and fiber applications.

Dr. Korley earned two Bachelor degrees in 1999: a B.S. in Chemistry and Engineering from Clark Atlanta University and a B.S. in Chemical Engineering from the Georgia Institute of Technology. In 2005, she earned her Ph.D. in Chemical Engineering from MIT, where she did work as a Post-doctoral Associate. Her doctoral thesis was titled PEO-containing Copolymers as Polyurethane Soft Segments in the Development of High Performance Materials.

Prior to joining the faculty of Case Western Reserve University in 2007, Dr. Korley was a postdoctoral fellow at Cornell University in the School of Chemical and Biomolecular Engineering.

In 2011, she was one of 78 young engineers selected to take part in the National Academy of Engineering’s 18th annual U.S. Frontiers of Engineering symposium. That year, Dr. Korley was also among the 18 faculty members from around the world to become part of the 43rd class of DuPont Young Professors; she received $75,000 for her work on bio-mimetic approaches to toughening and mechanical enhancement of polymers. Recently, Dr. Korley was honored with  a National Science Foundation CAREER Award and 3M Nontenured Faculty Award.

The Korley Research Group is nicknamed the “M-cubed” Lab for its work to develop mechanically enhanced, multifunctional materials. These materials are inspired by natural substances, like the titin protein or spider silk, that have special strength or toughness or responsiveness to heat or light. Applications include protective fabrics, food packaging, scratch-resistant coatings, optical and mechanical sensors, and even drug-delivery and tissue-engineering scaffolds.

As an MIT graduate student, Dr. Korley worked under the direction of Professors Paula T. Hammond and Gareth H. McKinley in the chemical engineering department's Program in Polymer Science and Technology. A decade later, the MIT Department of Chemistry will host Dr. Korley as a 2015-2016 MLK Visiting Associate Professor.


ACS Fellow 1995-1999

Dr. Korley reminisces on her experience as an ACS Scholar 




28. Jordan, A.M., Korley, L.T.J. "Toward a Tunable Fibrous Scaffold: Structural Development during Uniaxial Drawing of Coextruded Poly(caprolactone) Fibers", Macromolecules, 201548 (8), 2614–2627.

27. Sharma, A., Neshat, A.,  Mahnen, C.J., Nielsen, A.d.,Snyder, J.,Stankovich, T.L., Daum, B.G.,  LaSpina, E.M., Beltrano, G., Li, S.,  Park, B.-W., Clements, R.J., Freeman, E.J., Malcuit, C.,  McDonough, J.A., Korley, L.T.J, Hegmann, T.,  Hegmann, E. “Biocompatible, biodegradable and porous liquid crystal elastomer scaffolds for spatial cell cultures”Macromolecular Bioscience 2015,15, 200–214. Highlighted in Materials Views, 10/24/14, Journal Back Cover.


26. Johnson, J.C., Korley, L.T.J., Tsige, M. "Coarse-Grained Modeling of Peptidic/PDMS Triblock Morphology",  The Journal of Physical Chemistry B, 2014, 118(47), 13718-13728.

25. Monemian, S.; Jang, K-S.; Ghassemi, H.; Korley, L.T.J., Probing the interplay of ultraviolet crosslinking and non-covalent interactions in supramolecular elastomersMacromolecules 2014, 47(16), 5633-5642.

24. Kim, S-E.; Wang, J.; Jordan, A.; Korley, L.T.J. ; Baer, E.; Pokorski, J; Surface Modification of Melt Extruded Poly(ε-caprolactone) Nanofibers: Toward a New Scalable Biomaterial ScaffoldACS MacroLetters 2014, 3(6), 585–589.  

23. Jang, K-S.; Johnson, J.C.; Hegmann, T.; Hegmann, E.; Korley, L.T.J., Biphenyl-based Liquid Crystals for Elevated Temperature Processing with PolymersLiquid Crystals 2014, 41(10), 1473-1482.

22. Jordan, A.M.; Lenart, W.; Carr, J.; Baer, E.; Korley, L.T.J; Structural evolution during mechanical deformation in high-barrier PVDF-TFE/PET multilayer films using in-situ X-ray techniques, ACS Applied Materials & Interfaces 2014, 6(6), 3987-3994.

21. Wang, J.; Langhe, D.; Ponting, M.; Wnek, G.E.; Korley, L.T.J; Baer, E.; Manufacturing of Polymer Continuous Nanofibers using a Novel Co-extrusion and Multiplication Technique; Polymer 2014, 55(2), 673-685.

20. Johnson, J.C.; Wanasekara, N.D.; Korley, L.T.J.; Influence of secondary structure and hydrogen-bonding arrangement on the mechanical properties of peptidic-polyurea hybridsJ. Mater. Chem. B. 2014, 2, 2554-256.


19. Wojtecki, R.J.; Wu, Q.; Johnson, J.C.; Ray, D.E.; Korley, L.T.J; Rowan, S.J.; Optimizing the formation of 2,6-bis(N-alkyl-benzimidazolyl)pyridine-containing [3]catenates through component design, Chemical Science 2013, 4(12), 4440-4448.

18. Burt, T.M.; Monemian, S.; Jordan, A.M.; and Korley, L.T.J. Thin Film Confinement of Spherical Block Copolymers via Forced Assembly Co-extrusion, Soft Matter 2013, 9(17), 4381-4385.

17. Wanasekara, N.W.; , Korley, L.T.J.; Toward Tunable and Adaptable Polymer NanocompositesJournal of Polymer Science Part B: Polymer Physics 2013, 51(7), 463-467.

16. Burt, T.M.; Jordan, A.M.; and Korley, L.T.J. Investigating Interfacial Contributions on the Layer-thickness Dependent Mechanical Response of Confined Self-assembly via Forced AssemblyMacromolecular Chemistry and Physics 2013, 9(17), 4381-4385.


15. Wanasekara, N.W.; Stone, D.A.; Wnek, G.E., Korley, L.T.J.; Stimuli-responsive and Mechanically-switchable Electrospun Composites; Macromolecules 2012, 45(22), 9092–9099.

14. Burt, T.M.; Jordan, A.M.; and Korley, L.T.J. Towards Anisotropic Materials via Forced Assembly Co-extrusion, ACS Applied Materials and Interfaces 2012, 4(10), 5155–5161.

13. Johnson, J.C; Korley, L.T.J.; Enhanced Mechanical Function with Nature’s Building Blocks: Amino Acids; Soft Matter 2012, 8 (45), 11431-11442.

12. Lai, C-Y..; Hiltner, A.; Baer, E.; Korley, L.T.J.; The Deformation of Confined Poly(ethylene oxide) in Multilayer Films; ACS Applied Materials and Interfaces 20124 (4), 2218–2227.

11. Johnson, J.C.; Wanasekara, N.D.; Korley, L.T.J.; Utilizing Peptidic Ordering in the Design of Hierarchical Polyurethane/ureas; Biomacromolecules 2012, 13 (5), 1279–1286.

10. Stone, D.A.; Wanasekara, N.W.; Jones, D.;  Wheeler, N.R., Wilusz, E.; Zukas, W., Wnek, G.E., Korley, L.T.J.; All-Organic, Stimuli-responsive Polymer Composites with Electrospun Fiber Fillers; ACS Macro Letters 2012, 1, 80-83.

9. Burt, T.M.; Keum, J.; Hiltner, A.; Baer, E. and Korley, L.T.J.  “Confinement of Elastomeric Block Copolymers via Forced Assembly Co-extrusion”, ACS Applied Materials and Interfaces 2012, 3(12), 4804-4811.


8. Stone, D.A.;Hsu, L.;  Wheeler, N.R., Wilusz, E.; Zukas, W., Wnek, G.E., Korley, L.T.J.; Mechanical Enhancement via Self-Assembled Nanostructures in Polymer Nanocomposites; Soft Matter 2011, 7, 2449 – 2455.


7. Stone, D.A.; Korley, L.T.J.; Bioinspired Polymeric Nanocomposites; Macromolecules 2010, 43, 9217–9226. Cover

6. Kamperman, M; Korley, L.T.J; Yau, B.; Johansen, K.M.; Joo, Y.L.; Wiesner, U.; Nanomanufacturing of Continuous Composite Nanofibers with Confinement-induced Morphologies, Polymer Chemistry 20101, 1001-1004.

5. Ponting, M.; Abernathy, T.; Korley, L.T.J.; Hiltner, A.; Baer, E.; Gradient Multilayer Films by Forced Assembly Coextrusion, Industrial and Engineering Chemistry Research (special contribution in honor of Don Paul’s 65th Birthday), 2010, 49 (23), 12111–12118.


4. Waletzko, R.S.; Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T.; Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO- and PEO-PPO-PEO Soft Segments and HDI Hard Segments, Macromolecules, 2009, 42, 2041–2053

Prior to CWRU

3. Korley, L.T.J; Liff, S.M.; Kumar, N.; McKinley, G.H.;  Hammond, P.T.; Preferential Association of Segment  Blocks in Polyurethane Nanocomposites; Macromolecules 2006, 39, 7030-7036.

2. Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T.; Effect of the Degree of Soft and Hard Segment Ordering on the Morphology and Mechanical Behavior of Semicrystalline Segmented Polyurethanes; Polymer 2006, 47, 3073-3082.

1. Jensen, R.E.; O’Brien, E.; Wang, J.; Bryant, J.; Ward, T.C.; James, L.T.; Lewis, D.A.; Characterization of Epoxy-Surfactant Interactions; Journal of Polymer Science: Polymer Physics Edition 1998, 36, 2781-2792.


Creating New Polymers, and Upcycling the Old Ones, Slice of MIT, 11 January 2021